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Abstract

Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can
compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by
the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat
illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat
should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to
deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more
efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness
risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it
impractical and infeasible, especially if there are other training requirements and expectations. Recent research in
athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to
induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods
or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as
lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of
special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated
baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups
are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to
establish the most effective and feasible approach to implement them within military groups.
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Background
Military units deploying abroad are often exposed to
challenging environments. One is heat stress, which pre-
sents as high ambient temperature, often augmented by
high humidity, resulting in heat strain. Heat strain af-
fects many physiological systems, compromising physical
and potentially also cognitive performance [1–7]. Heat
has impaired military performance for thousands of
years, with ancient Greek and Roman reports highlight-
ing the dangers of warfare in the heat, largely noting that

heavily armoured troops were more affected [8–10]. It
was not until British colonisation that more detailed re-
ports were compiled outlining the dangers of transition-
ing into a hotter environment [11]. Those most affected
by the heat were frequently new arrivals in the summer
months, indicating that individuals could acclimatise to
hot environments within a few months [11]. While this
was still a problem during World War I campaigns in
the Middle East [10, 12], by World War II an invested
interest in how to prevent or limit these problems scien-
tifically was undertaken in military groups. This interest
was brought on by a wave of heat-related injuries sus-
tained both in the field and in training camps [13, 14].
Safety regulations were implemented to adjust carried
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load and clothing worn and to dictate duration and in-
tensity of activities based on the environmental
temperature and humidity [14, 15]. Studies progressed
further after World War II, looking to minimise the car-
ried load [16] and provide better clothing for such con-
ditions [17, 18], as well as conducting the first
investigations into using heat acclimation and acclima-
tisation to prepare soldiers for hotter environments by
eliciting chronic adaptations [19–22]. Planned acclima-
tisation was investigated first, allowing soldiers a period
of time in a new climate to adapt to the environment
[19–21, 23–26], while later developments in heat cham-
bers allowed artificial heat exposure to induce such ad-
aptations [27–30], a process known as heat acclimation
(HA). From these investigations cardiovascular strain
was determined to be a major limiting factor of perform-
ance in the heat [31–33], prompting investigations into
hydration status and blood volume regulation mecha-
nisms [34–39]. With technological advancements redu-
cing the time to deploy troops to different climates
abroad, it is important that research develops to ensure
soldiers are adequately prepared when exposed rapidly
to extreme climates. Therefore, the aim of this narrative
review is to consider 1) the physiology of exercising or
working in ambient heat stress in a military context, and
2) the effectiveness and practicality of strategies for cop-
ing in hot environments, with an emphasis on short no-
tice deployments and HA. This review will also highlight
the challenges of optimising HA within the military,
which may identify and guide future directions for
military-specific HA research.

Physiological response during physical work in
the heat
In the heat, blood flow is reduced in splanchnic [40–43],
inactive muscle [40] and potentially cerebral [44, 45] cir-
culations, to elevate skin blood flow for cooling [46, 47].
During exercise, active skeletal muscle blood flow must
also increase substantially to deliver oxygen and sub-
strates to exercising tissue [31, 48]. Work performed by
exercising muscle produces heat, which usually com-
prises the majority of total heat load, requiring a further
increase in skin blood flow to protect thermal homeosta-
sis [49, 50]. Skin blood flow typically increases alongside
core temperature, but plateaus when core temperature
reaches 38 °C, at 50% of maximal skin blood flow [33,
34, 51]. Exercise is facilitated when cerebral, skin and
skeletal muscle perfusion requirements are met [34, 48,
52]. However, cardiovascular demand is exacerbated by
increases in exercise intensity that promote blood flow
to skeletal muscle (if it has not plateaued), while in-
creases in core or skin temperature elevate blood flow to
the cutaneous vasculature [32, 34, 53]. As blood flow
and volume is redistributed peripherally, central blood

volume declines, which can be exacerbated in long-
duration exercise by sweat-induced dehydration [46, 54,
55]. If central blood volume becomes insufficient to sup-
port blood flow requirements, the cutaneous and skeletal
muscular circulations compete for the limited blood
supply [32, 34, 56].
During the early stages of exercise, it appears intensity

is maintained by restricting skin blood flow to provide
adequate blood supply to exercising skeletal muscle at
the cost of reduced cooling, accelerating the rise in core
temperature [32–34, 52, 57]. However, prior to termin-
ation of exercise in fixed-workload trials, skeletal muscle
blood flow is reduced [31]. In self-paced exercise, a re-
duction in exercise intensity occurs early as an anticipa-
tory response to limit the strain of the competing
circulations and allow task completion [49, 58–60]. Al-
though measures of integrated electromyographic activ-
ity indicate that motor unit recruitment reduces [49,
61–63], this is not accompanied by a reduction in vascu-
lar conductance in the exercising muscle [31, 32]. This
indicates that the reduction in skeletal muscle blood
flow is due to a drop in central blood pressure caused by
exacerbated cardiovascular demand [32], secondary to
high temperature of peripheral tissue [31, 64, 65]. It is
unknown whether reduced motor unit recruitment oc-
curs alongside or because of high core temperature, or
whether other physiological feedback mechanisms play a
more substantial role [33, 44, 66, 67].
Much of this research has uncovered physiological

processes and mechanisms that have been determined
within, and applied to, athletic situations, thereby under-
representing military-specific factors that increase and
complicate the challenges of exercising in the heat
(Fig. 1). For example, protective clothing and equipment
reduces skin-to-air contact, impairing convective and
evaporative heat loss [47], while also affecting radiative
heat gain depending on both the layers and permeability
of clothing [68]. In this situation skin blood flow in-
creases in an attempt to dissipate heat, further straining
the limited blood supply while achieving little additional
heat loss [69]. The combined weight of body armour,
webbing and a backpack adds to physiological demand
by increasing metabolic cost, elevating skeletal muscle
blood flow requirements [70]. Furthermore, soldiers typ-
ically have a lower cardiovascular fitness level than the
athletes used in the majority of heat research [71–73], so
would likely have a lower thermal tolerance [74], even
before considering carried loads and restrictive clothing.
Altogether, these aspects exaggerate cardiovascular de-
mand, diminish work capacity [75, 76] and predispose
soldiers to exertional heat illnesses [10, 77, 78], although
these relations remain equivocal [79].
Exertional heat illness occurs in uncompensable heat

stress where the metabolic heat production of exercise is
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unable to be offset by heat exchange with the environ-
ment, and exercise intensity is insufficiently downregu-
lated by the individual, leaving them incapacitated [80].
While this often is present in the form of heat exhaus-
tion, extreme cases can cause heat stroke, which can im-
pair central nervous system function [81, 82], cause
organ damage [83, 84] and lead to death [12, 14, 85, 86].
Investigations at a basic training facility found 2% of re-
cruits suffered exertional heat illness during summer
months [87], while others observed a 40% higher all-
cause mortality at a 30-year follow-up in those with
prior exertional heat illness [88]. While this could be as-
sociated with chronic organ and tissue damage [88],
whether the relationship is or is not causal remains to be
determined.

Strategies to combat the effects of heat
Acute heat exposure negatively affects both physical and
mental performance, therefore a strategy to maintain
performance and health is desirable [89]. Many military
operations require relocating to hotter environments for
specific missions including disaster relief and unexpected
events, before being withdrawn. Deployment notice can
sometimes be very short (~ 12 h) allowing minimal, if
any, time for heat preparation. These scenarios highlight
the importance of strategies to reduce the effects of the
heat. Such strategies can occur at the level of the envir-
onment, and the level of the individual. For example, the
living environment can often be modified in advance to
minimise thermoregulatory requirements (i.e. air-
conditioned barracks, shaded areas) [15, 90], and aid
thermal recovery following exertion (i.e. ice baths, cold

water) [82]. Similarly, personal protective equipment
should be designed to facilitate heat loss and minimise
burdened weight [16, 91].
Several acute strategies can be used at the level of the

individual to off-set heat strain, but the unpredictable
nature of military tasks and rapidly changing circum-
stances mean they cannot always be relied upon [92].
Nonetheless, behavioural modification (i.e. shade-
seeking, rest) can prevent elevations in core temperature
[86], and are often inherent within military guidelines in
the form of heat index charts to minimise casualties [93,
94]. This attenuated rise in core temperature can also be
achieved with cooling mechanisms, such as ice vests [95]
or cold-water immersion [96], used before, during or
after exercise. However, ice vests can be uncomfortable,
impair body armour function, add to carried weight and
requires facilities to generate ice [97, 98]. Similarly, cold-
water immersion, the gold-standard method for lowering
core temperature [9, 82], requires access to large quan-
tities of cool water. When water supply is limited it
should preferentially be used for drinking and hygiene. If
facilities are available, consumed water should be chilled
[99] and supplemented with electrolytes to prevent
hyponatraemia [100] and increase palatability [101].
These strategies are all viable options, but all are limited

by being potentially unavailable. Therefore, strategies such
as HA that take place prior to deployment can be more
controlled and develop adaptations that would be
augmented by the acute strategies outlined above.

Heat acclimation
HA can prevent decrements in both physical and cogni-
tive performance [89], and likely reduces organ damage

Fig. 1 Differences in performance expectations between athletes and soldiers
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[102], by altering key underlying physiological variables.
It is likely that subcellular adaptations to transport,
stress, contractile and metabolic proteins (reviewed else-
where [103–105]) help lower resting body temperature,
enhance heat dissipation and tolerance [59, 106, 107]
and potentially reduce metabolic rate [108]. Systemic ad-
aptations also occur with plasma volume expansion in-
creasing skin blood flow and sweat rate which help
lower core and skin temperatures. These adaptations
allow a higher exercise intensity to be maintained at a
given core temperature, or for a lower core temperature
to be maintained at a given exercise intensity, thereby
improving performance and reducing injury susceptibil-
ity [3, 4, 40].
On-site heat acclimatisation over several weeks is

regarded as the best-practice methodology to adjust
personnel to the environment they will operate in [59,
109]. Even then, arrival in the environment for acclima-
tisation can pose a challenge as personnel are not ad-
justed to the heat. Recent research, primarily in athletic
contexts, has used HA to induce adaptations comparable
to on-site acclimatisation [96, 109]. However, military-
specific factors may prevent the direct transferal of ath-
letic findings to military populations (Fig. 1).
For an in-depth review on methods to minimise the

effects of heat on military personnel, when ample de-
ployment notice is given, we refer the reader to the re-
cent review of Parsons et al. [89]. However, alternatives
are required when notice is noticeably shorter; less than
one week and, on occasion, less than one day [96, 109].
Therefore, this section aims to discuss the adaptations
that occur as a result of HA, and how they relate to a
military environment.

Physiological adaptations
Plasma volume
During acute heat exposure plasma volume is redistribu-
ted and eventually declines as fluid is lost primarily
through sweat, but also respiratory losses, urine and faecal
formation [110]. As a result, blood availability for skin and
skeletal muscle becomes restricted, which can reduce per-
formance in high-intensity or long duration events by lim-
iting cooling and skeletal muscle blood flow. However,
with continuous exercise, low central blood volume, re-
duced renal blood flow and plasma hyperosmolality
stimulate aldosterone and anti-diuretic hormone secre-
tion, upregulating fluid retention mechanisms and stimu-
lating thirst to restore plasma and therefore blood
volumes (Fig. 2) [59, 111]. When repeatedly exposed to
this stimulus the increase in plasma volume exceeds base-
line values, aiding resilience against subsequent exposures.
HA programmes have seen plasma volume expansion in
as little as two days [112]. Plasma volume increases of
more than 20% have been reported [113, 114], although ~

7% is more common [115–117]. The greater blood vol-
ume likely facilitates blood supply to active skeletal muscle
and cutaneous circulations simultaneously [54, 59], redu-
cing the cardiovascular burden, therefore increasing the
cardiovascular reserve to support performance at higher
intensities or for longer durations.
As increasing plasma volume effectively increases the

amount of blood that can be distributed throughout the
body, studies have explored ways of augmenting the
increase seen with HA. For instance, permissive dehy-
dration, to exacerbate the reduction in central blood
volume, is hypothesised to increase aldosterone concen-
tration, promote fluid retention and stimulate thirst
[117–119]. Garrett et al. [117] found 5 days of HA (in-
volving 90min cycling per day with core temperature
maintained at 38.5 °C in 35 °C, 60% relative humidity
(RH)) in an experimental group abstaining from fluid
intake, [117] to obtain an 8% mean increase in plasma
volume, compared to only a 4% mean increase in
controls drinking ad libitum during sessions. Alterna-
tively, consumption of protein supplements immediately
post-exercise has been explored [120–122]. These sup-
plements increase plasma albumin content, creating an
oncotic gradient to draw fluid into the vascular space to
elevate blood volume [120–122]. However, it has not
been investigated as to whether supplement-derived
plasma volume enhancement leads to improved
performance.

Heart rate
Elevated blood volume caused by HA enables blood
pressure to be maintained in the heat, even with high
blood flow demands from skeletal muscle and the cuta-
neous circulation. While animal studies indicate that
over time this could potentially invoke morphological
cardiac adaptations that increase ventricular compliance
and inotropic state [123, 124], the increased preload
helps increase stroke volume [59] allowing heart rate to
decrease while maintaining cardiac output [125, 126].
Heart rate is also independently elevated by high core
and skin temperatures to increase cutaneous blood flow
[127]. During HA, core and skin temperature decline,
therefore heart rate is reduced. While lowered heart rate
does not improve thermoregulation per se, it indicates a
larger cardiac reserve, therefore a reduced cardiovascular
strain, making it an optimal outcome for any HA
programme. Heart rate can be seen to decline in the first
few days of a HA programme, suggesting the changes
underlying this occur rapidly, making them relevant to
short HA timeframes desired by the military [128–130].

Skin blood flow
Skin blood flow translocates thermal energy to the sur-
face, heating the skin to facilitate convective heat loss
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between the skin and the air, while also facilitating evap-
oration (and production) of sweat, thereby cooling the
blood. With elevated plasma volume, blood flow to cuta-
neous vasculature increases, facilitating heat dissipation
(Fig. 2) [55, 131]. However, while many studies report
increased skin blood flow after HA [116, 117, 120, 132]
some observe decreases [41], or even no change [40,
118, 132, 133]. These inconsistencies may be due to dif-
ferences in acute hydration state brought on by water re-
strictions in some studies. Alternatively, the plateauing
of skin blood flow during exercise [34] may increase
blood transit time through cutaneous circulations.
Therefore, a more complete heat loss can occur, helping

to widen the core-to-skin temperature gradient, facilitat-
ing heat transfer away from the core [57].
Despite inconsistencies around changes in skin blood

flow, mechanistic studies have found HA to increase
skin blood flow at a given core temperature in fixed-
intensity trials, helping increase the rate of heat dissipa-
tion [29, 125, 134–136]. When wearing military clothing
any HA-mediated increase in skin blood flow will likely
be less effective in promoting heat loss than current re-
search would assume but may still contribute to total
heat loss and slow the rise in core temperature. Within
this, it is important that soldiers do not compromise the
limited skin-air contact that does exist. Certain

Fig. 2 Schematic detailing some of the body’s major responses to exercise in the heat, from the acute responses to the chronic adaptations that
occur with repeated exposures
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sunscreens [137, 138] and deodorants [138, 139] can im-
pair both convective and evaporative heat loss more than
others, while similar problems may occur when using
eye-black or camouflage paint.

Sweat rate
Sweating provides the main avenue of heat loss in hot
environments [109, 140] and at elevated work-rates, if
humidity is low enough to facilitate its evaporation
[141]. Hypotonic fluid is secreted from a vast network of
eccrine sweat glands located across almost the entire
body surface. Sweat output and its distribution show
large variability across individuals and body segments,
and also varies with exercise intensity, posture, local skin
pressure and temperature [142–144], while the cooling
(i.e., evaporative) outcome will be further governed by
overlying clothing and load carriage patterns [144]. With
HA the core temperature threshold for sweating reduces
[40], while sweat gland sensitivity heightens [29], thereby
increasing the overall sweat response [145]. Further-
more, primate studies reveal that sweat glands undergo
hypertrophy [146] and have increased blood supply
[147] following HA, likely due to increased skin blood
flow, which facilitates sweat production and secretion
[148]. By increasing sweat production more heat is lost
(assuming low humidity), reducing the rate of rise in
core temperature, and enabling exercise at higher inten-
sities or for longer durations (Fig. 2). Additionally, sweat
electrolyte content decreases [54, 149], shown by
reduced sodium concentration [59, 150, 151] and osmo-
lality [152, 153], which help protect against hyponatrae-
mia [154–156]. Sweating adjustments to HA take the
longest to occur [24, 125, 157], but are seen in some
short-term protocols [118, 158–164], albeit at lower
magnitudes [125]. Interestingly, increases in sweat rate
may not be beneficial to military personnel operating in
high humidity environments where sweat cannot evapor-
ate, or those wearing protective clothing with low mois-
ture permeability, and in extreme cases those required
to wear protective suits [5]. Such clothing can impede or
prevent sweat from evaporating, raising the microclimate
humidity [165, 166] and causing sweating to occur
without heat loss, resulting in dehydration which is det-
rimental to performance [38, 82, 96, 167, 168]. As dehy-
dration is highly likely to occur in such situations fluid
intake is required to minimise negative effects on cogni-
tive [169–171] and physical performance [74, 172, 173],
whilst also helping to maintain central blood volume.
Advice for hydration has already been well reviewed in
current literature [167, 174–176], although for some
military units access to water may be limited and those
guidelines may require modification. Assuming HA is
beneficial, personnel wearing restrictive clothing may
benefit from shorter HA protocols that induce a lesser

sweat response, but still provide other valuable adapta-
tions (see below).

Core temperature
A high core temperature is associated with negative ef-
fects on comfort, inflammatory responses [177], organ
function [83, 84], descending corticomotor drive [49,
178], as well as performance [40, 44, 49, 179, 180]. Typ-
ically, HA evokes a lower resting core temperature [160]
and reduces the rate of rise in core temperature due to
improved heat dissipation [181]. Increases in sweat rate
and convectional heat loss from increased skin blood
flow, usually enables a lower core temperature at the
same relative intensity as before HA (Fig. 2). In an inves-
tigation involving military personnel, Cheung and
McLellan [74] found 10 days of HA (10 days of walking
at 4.8 km/h at a 3–7% gradient for 1 h in combat cloth-
ing in 40 °C, 30% relative humidity over two weeks), to
reduce resting core temperature by ̴ 0.2 °C regardless of
fitness level, in line with most studies of less than 14
days [125]. A lower resting core temperature increases
the heat-sink capacity of the body, enabling more work
to be achieved before cooling mechanisms are upregu-
lated [117, 182, 183].

Skin temperature
As core temperature decreases with HA, it is important
that skin temperature also reduces to ensure the core-
to-skin temperature gradient facilitates heat transfer to
the periphery [184, 185]. Although rarely seen at rest
[183], during exercise, skin temperature lowers with HA
[162, 186, 187]. However, in a military context, the influ-
ence of clothing minimises skin to air contact, mitigating
the rate of cooling. Instead, benefits would likely be seen
through the role of skin temperature in the perception
of heat. Skin temperature initiates behavioural thermo-
regulation [188] and has been suggested to majorly
contribute to pacing strategies [58, 65]. By lowering skin
temperature with HA, perceptual and physiological
enhancements help to prolong exercise [173].

Perceptual changes
Skin temperature [58, 172], heart rate and core
temperature all play a role in regulating perceptual
responses to heat [189, 190]. As these reduce with HA,
exercise in the heat feels easier, shown by improved
thermal comfort, thermal sensation and rating of per-
ceived exertion [191–193], especially following active
HA [194]. Some short-term HA studies see changes
primarily in perceptual outcomes, with negligible im-
provements to physiological variables [195]. In military
settings a combination of peer-pressure and adrenaline
can easily overcome perceptual inputs, placing soldiers
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in physiological danger without being aware of how their
body is responding [194].

Aerobic performance
Endurance performance is impaired in high ambient
temperatures [196, 197], by a combination of factors in-
cluding elevated core and skin temperature [172, 189],
reduced central blood volume [46, 54, 55, 65, 198], sys-
temic low-grade inflammation [42, 177] and perceptual
responses to heat [96]. Physiological changes that im-
prove heat dissipation mechanisms enable endurance
performance in the heat to be improved following HA
[125, 199]. A meta-analysis by Tyler et al. [125] showed
medium (7–14 days) and long term (> 14 days) HA pro-
tocols improved performance by ̴ 20%, while short-term
(< 7 days) protocols resulted in improvements of 7%. Im-
provements are measured either with a time to exhaus-
tion test, or a time-trial test, with time to exhaustion
tests showing disproportionally greater improvements
[125]. Time to exhaustion tests have been criticised for
being invalid for sporting situations compared to a time-
trial which integrates perceptual responses through the
self-regulation of pace [200, 201]. However, in a military
setting they can be just as valid as some military tasks
are conducted at fixed intensities.

Individual variation in heat tolerance
Physiological differences between people causes individ-
ual variation in the heat [202], where some perform
better than others, despite similar performances in tem-
perate conditions [80, 160, 203, 204]. Those who strug-
gle with heat exposure, and indeed those who have had
prior heat illness, should undergo heat-tolerance testing
[205, 206]. These individuals may require extra medical
attention after deployment, or be closely supervised dur-
ing additional HA before deployment, to induce protect-
ive physiological adaptations that will help minimise
heat injury risk [82, 207, 208]. Despite these efforts it is
still likely that some soldiers arriving in hot environ-
ments will experience adverse effects [10, 12].
There are sub-populations of soldiers that are more

prone to heat illness than others. Sex differences likely
place females at a thermoregulatory disadvantage, mostly
due to anthropometric differences [209, 210]. Further-
more, females sweat less than males [211, 212] which, al-
though potentially minimises dehydration, can reduce
heat loss [211]. Accordingly, it has been suggested that
females may require additional HA to obtain the same
adaptations as males [162, 213]. Unfortunately, limited
information exists regarding the effects of menstrual
cycle on thermal tolerance and adaptations [214–218]
due to the majority of studies in females controlling for
this by testing women at the same time-point in their
menstrual cycle [161].

Aging also has an effect on thermal tolerance, with
older people having higher core temperatures and lower
sweat rates, increasing their risk of heat illness [219,
220] if opportunity for behavioural thermoregulation
(e.g., lower pacing or resting) is constrained. While age
does not appear to affect responsiveness to HA [125],
the lower baseline for thermal tolerance in older
personnel means they would likely benefit from ex-
tended HA protocols [219, 220]. Despite this, studies
looking at heat illness incidence rates often find no
relationship with age, possibly due to absolute fitness
requirements [221, 222].
Fitness is tightly linked with improved performance in

the heat [74, 223], with those with a higher fitness level
being more economical [224] and having enhanced car-
diovascular capacity that helps combat the effects of heat
[59]. However, fitness is not a substitute for HA [202]
and does not affect the degree of heat adaptation [125].
Finally, there are other important factors impacting on
thermal tolerance, and although considered beyond the
scope of this review, include medication [225], disease
[226, 227], skin coverings such as camouflage paint and
tattoos [228], sleep restriction [229], and jet-lag [230]. It
is important that group leaders are aware of these fac-
tors during deployment so they can assess and monitor
each individual and adjust activity levels and exposure (if
possible). Furthermore, in the event of a heat illness,
additional monitoring is required to safely manage
symptoms until appropriate medical attention can be ad-
ministered [231]. Monitoring technology may enhance
this [232–234], but may not be useful in extreme scenar-
ios, emphasising the importance of pre-deployment heat
adaptation.

Cognitive performance
As acute cognitive performance has been reviewed
elsewhere, both during exercise [235–237], and in
passive (non-exercising) heat stress [238–241] this section
will focus on areas relevant both to the military
and HA.
Military tasks require a diverse cognitive workload

rarely seen in athletic situations, which along with the
complex nature of cognitive testing [242], may be why
this area of performance has received comparatively little
attention. Retrospective military reports indicate that
cognitive errors are more common in higher tempera-
tures [241, 243], but these claims are not supported by
experimental studies in the wider literature [238, 240,
244, 245]. The discrepancy likely centres around task-
specific responses to low-risk, lab-based, cognitive test-
ing [246, 247], and a lack of standardisation in regard to
the heat stimulus [239]. Furthermore, many studies have
a delay between exercise termination and cognitive test-
ing [92, 248–250], and therefore do not capture
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cognitive performance during exercise. The recovery
period likely enables cognitive function to recover and
improve compared to performance during exercise [235,
237], which may make them invalid and potentially mis-
leading for military applications in which critical deci-
sion making can occur during exercise.
The effects of HA on cognitive performance are less

clear. Studies have shown improvements in reaction
time [92] and correct responses to rapid visual process-
ing [92], no effect on visual inattention [246] and simple
motor performance [92, 246] while time perception has
improved [251] or worsened [246] in different studies.
Certain adaptations to HA may aid cerebral function by
way of constraining hyperthermia, maintaining cerebral
blood flow or lessening discomfort and therefore distrac-
tion effects. Although cerebral blood flow increases with
exercise intensities up to 60% V̇O2max, it declines at
higher intensities [252–254]; a relationship likely further
influenced by exercise duration and exacerbated by high
body temperature [45, 255]. Therefore, increased plasma
volume may be thought to improve cognitive function
through increased cerebral blood flow at these inten-
sities, for reasons mentioned above. However, alterations
in cerebral blood flow do not appear to affect cognitive
performance. Cerebral autoregulation enables cerebral
blood flow to be maintained despite changes in mean
arterial blood pressure brought on by both exercise and
heat reducing cerebral blood flow [57, 126, 253]. Brain
oxygen, glucose and lactate uptake are not related to
reduced cerebral blood flow, but do decline at very
high intensity exercise [253, 256]. The continued up-
take of nutrients may explain why when manipulating
cerebral blood flow with hypercapnia there are min-
imal changes to cognitive performance [257]. Other
mechanistic findings indicate that cerebral neural acti-
vation [257] or alterations in cerebral metabolism
[258] may play a larger role. The lack of understand-
ing as to why cognitive performance appears affected,
and may be improved, is an aspect of HA that is yet
to be properly investigated. While it is hard to recre-
ate military decision making in the manner it would
be encountered in the field, it is important to use
tasks of a similar nature to better understand the
foundational cognitive processes being undertaken
and how they might be affected both by heat and
with HA. Recent studies have offered new insights
using brain imaging technology to analyse cognitive
function in the heat, even showing that head cooling
may help overcome the negative impact of hyperther-
mia [259]. Future studies should extend this by add-
ing exercise to the paradigm, to develop a greater
understanding of what causes impairments to cogni-
tive function in the heat.

How to achieve heat acclimation
The efficacy of several different HA protocols has been
reported in the literature. Many factors, such as the heat
modality, ambient conditions, frequency of sessions,
number of sessions and duration of each session can be
adjusted to influence the physiological response to heat
and exercise. Furthermore, while these factors have often
been chosen or adapted to produce the best outcomes in
sporting applications, they can be impractical for mili-
tary contexts. For example, most HA protocols involve
exercising in a heat chamber, allowing environmental
conditions to replicate that of a desired environment
[118, 128, 160, 161, 183, 260]. However, these facilities
are often hard to access and cannot accommodate large
numbers of participants. Within each session most stud-
ies use low or moderate intensity exercise (45–65%
V̇O2max) [2, 116, 158, 159, 186, 261, 262], with sessions
lasting at least one hour [117, 118, 128, 132, 152, 158,
161, 183, 187, 261]. For the military this would mean
adding extra exercise sessions, which may impair other
training [177, 263], and could result in overtraining [264].
Recent athletic HA studies have made an effort to

maintain the thermal strain during exercise across a HA
regime using the controlled hyperthermia technique, i.e.
intensity is adjusted regularly to ensure core temperature
is maintained at 38.5 °C during exercise sessions [114,
117, 118, 128, 152, 161, 162, 183, 186, 260, 262, 265,
266], but this requires additional equipment and vigilant
monitoring of participants using invasive equipment
(Fig. 3). Furthermore, typical HA programmes take two
weeks to see meaningful changes in sweat responses
[109, 152, 163, 164, 178, 267], which does not suit
military groups with short deployment notices.

Short-term heat acclimation
Recent literature has focused on optimising short-term
(< 7 days) HA [2, 41, 117, 118, 120, 128, 158–162, 177,
183, 195, 260, 268–272] to minimise the barriers present
in HA and prevent potential interference with higher
priority training objectives [158, 195, 263]. However, this
method adds additional training sessions, which may
promote fatigue and overtraining, while also requiring
access to facilities, such as heat chambers [183, 186].
The reduced programme length also limits the magni-
tude of adaptations [125]. While a lack of increase in
sweat rate might limit dehydration, this may occur at the
cost of other adaptations, and would soon develop upon
deployment [160]. While short-term HA may be prac-
tical for athletic groups (and some military situations),
the reduced magnitude of changes makes it less desir-
able for groups deploying with ample notice, and the
length of the programme is likely incompatible for
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short-notice deployment units (Fig. 3). For deployments
of slightly longer notice, it might serve as a primer for
more chronic adaptations to develop during deployment.

Passive heat acclimation methods
Passive heat exposure modalities, such as saunas or hot-
water immersion facilities, allow groups of people to ac-
climate at once (Fig. 3), and can be installed easily. Pas-
sive HA may alleviate concerns that essential training
may be impaired by additional sessions being conducted
in the heat (Fig. 3), although to what extent normal
training can be affected is currently unclear. Passive heat
methods have typically been employed post-exercise,
allowing exercise to elevate core temperature that can be
maintained or further increased by passive heat [273–
275], while there may also be benefits to having exercise

metabolites in the circulation during passive heating
[276]. The following sections consider passive heating
methods currently in use and the evidence surrounding
their physiological and functional effectiveness.

Sauna Saunas are a hot-dry (65 °C - 110 °C, 10–30% rela-
tive humidity) room designed to induce cardiovascular
strain and a sweat response [277]. Increases in peripheral
blood distribution help invoke cardiovascular and hormo-
nal adaptations that are beneficial for coping in the heat
(Fig. 2). Scoon et al. [273] reported four 30-min post-
exercise saunas (90 °C) per week for three weeks increased
plasma volume by 7%, while improving time to exhaustion
by 32%. Supporting this, Stanley et al. [278] found a
plasma volume increase of 18% after four 30-min post-
exercise sauna exposures (87 °C, 11% RH). The larger

Fig. 3 Flow-diagrams to determine the most appropriate form of heat acclimation, and how long that heat acclimation protocol should be, prior
to deployment. Groups are defined as >5 personnel. Operational flexibility is the ability to change the activities done during the operation (i.e.
ability to stop and rest or change the objective). wk: weeks
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increase could be due to sessions occurring on consecu-
tive days, although further comparison between studies is
limited by the lack of a performance test.

Hot-water immersion Hot-water immersion works simi-
larly to sauna and has also been used to maintain an ele-
vated core body temperature after exercise. For six
consecutive days Zurawlew et al. [274] had an experimental
group bathe in 40 °C water for 40min following training,
allowing for an additional ~ 1 °C rise in rectal temperature,
compared to controls bathed in 34 °C water. In a heated
(33 °C, 40% RH) 5-km running time-trial the intervention
group improved 4.9%, linked to lower core and skin
temperature, and an earlier sweat onset. Similar findings
were observed in a subsequent study, by the same research
group, which also saw reductions in end-exercising heart
rate and V̇O2, and no significant change in plasma volume
[275]. Brazaitis et al. [279] produced similar findings using
immersion in 44 °C water up to the waist for 45min on al-
ternating days over a two-week period, without prior exer-
cise. Although no performance test was conducted, this
resulted in lower core temperature (↓ 0.3 °C), heart rate (↓
12 beat/min) and psychological strain, and an increased
sweat rate (↑ 40%) during hot-water immersion on day 14
when compared to day 1 [279].
In summary, both sauna and hot water immersion pro-

vide a heat exposure stimulus without requiring additional
exercise, which may benefit military groups with heavy
training schedules. These two passive heating modalities
are yet to be directly compared in a HA context, so it is
unclear whether they offer unique adaptations that may
help before travelling to stressful environments. Further-
more, no study had compared either method to a more
traditional, exercising HA programme, so it is unclear
what differences exist in maximal adaptive capacity as well
as the rates of adaptation each offer. Further investigations
are required to evaluate the performance of both passive
heating methods and to optimise their ability to induce
heat adaptations.

Heat re-acclimation One method that could enable
rapid HA in military personnel is re-acclimation. This
topic has recently been thoroughly reviewed elsewhere
[280], and so will only be discussed briefly here. Heat re-
acclimation occurs following a period away from heat after
completing an initial HA programme. Here, a few HA ses-
sions are used in attempt to restore, or maintain, heat ad-
aptations which otherwise begin to decay [59]. As studies
in this area are relatively limited, results vary, with some
studies finding a day of HA is lost with every two days
without heat stimuli [178], while a single HA session every
5 days can sustain adaptations [59, 281]. Within a military
context, where deployment time can be unknown, re-
acclimation could maintain a heat-acclimated state for a

long period of time. Despite this area of research still be-
ing in its infancy, the potential to regain the adaptations of
a previously completed heat-acclimation regime in a very
short space of time (Fig. 3), or to continuously maintain
them is promising. Within the military, maintaining these
adaptations after acclimatising on deployment or during
training in a warmer climate are both convenient and feas-
ible. This would allow heat-acclimated soldiers to deploy
to hotter climates at very short notice with minimised
heat-related performance impairments.

Recommendations
On-site acclimatisation in the operational environment
allows all-day exposure to the environmental conditions
that will be worked in, and therefore is often the most
desirable way to adjust to the heat. However, this is not
always possible, and indeed deployment to this environ-
ment must also be considered. In more temperate
environments where soldiers typically train, HA is an ef-
fective way to induce physiological adaptations to
protect the body against thermal disturbances to homeo-
stasis. Traditionally heat chambers are used for HA [54,
125], although this does require additional training ses-
sions and can make it hard to acclimate large groups of
people [263]. However, if these limitations are irrelevant
then use of heat chambers for HA is well supported
[125]. Whether or not supervision (both by person and
technical equipment) is available to support these ses-
sions dictates whether controlled hyperthermia or fixed-
intensity exercise should be conducted (Fig. 3).
Controlled hyperthermia is currently considered the

best-practice method for HA [152, 186], although it does
require invasive and expensive equipment to provide real-
time measures of core temperature, and because of this
has often been overlooked in favour of fixed-intensity pro-
tocols [89]. Alternatively, when such facilities are unavail-
able, or additional training is undesireable, passive heat
acclimation can provide an effective alternative (Fig. 3).
While further studies are required to determine the best
use of this approach, the results from recent studies are
promising, demonstrating both performance enhancing
and protective adaptations [274, 278, 282].
When considering the length of the heat acclimation

protocol it is important to consider how HA integrates
with other training requirements. This may impact the
length of the HA protocol as conducting sessions on con-
secutive days may become impractical [263]. Furthermore,
the overall load and fatigue state of soldiers during HA
phases also requires attention as arriving at the deployed
destination with in an over trained state will render adap-
tations meaningless [6, 222]. If operational flexibility is
low (i.e. mission objectives are fixed and must be com-
pleted within a precise timeframe) soldier fatigue state be-
comes even more desirable than usual for HA adaptations
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to be as complete as possible as there is limited opportun-
ity for behavioural adjustments to the heat [58]. Therefore,
the use of a long-term HA protocol to generate these ad-
aptations is ideal, although if notice before deployment is
short re-acclimation would be more suitable (Fig. 3). The
re-acclimation would require having already conducted a
long-term HA protocol, and then maintaining those adap-
tations for a prolonged period, to hold an elevated baseline
heat tolerance. As such a strategy exists in a unique situ-
ation of long-term planning but short notice, this would
likely only be used in special units that know they could
be called upon at any time to deploy into different cli-
mates. If operational flexibility is moderate-high, then heat
acclimation prior to deployment would likely act as a pri-
mer to minimise the effects of heat immediately upon ar-
rival and provide a baseline heat tolerance that would be
enhanced in the coming days (Fig. 3). Regardless, if ample
notice is given prior to deployment, it makes sense to ob-
tain maximally beneficial adaptations, if other training al-
lows it.

Conclusions
Both physical and cognitive performance are impaired
during exercise in the heat. With HA underlying physio-
logical adaptations enhance thermoregulatory and cardio-
vascular function, which are responsible for at least part of
the improved performance in the heat. While HA studies
to date inform strategies for athletes preparing for compe-
tition in the heat, there is minimal consideration of mili-
tary specific factors such as restrictive clothing, carried
loads, large groups being acclimated, or short deployment
notice. For military units that might expect to deploy at
short notice (< 1 day) the options regarding heat acclima-
tion are limited, beyond proactive planning to maintain
heat adaptations for a prolonged and unspecified period.
However, this approach has received limited attention in
the literature due to this unique set of circumstances.
Therefore, further investigations are required to optimise
HA for military application. Specifically, the identification
of effective, practical and feasible methods of HA, or re-
acclimation, which can be undertaken by large groups of
military personnel at short notice to prepare for deploy-
ment to hot environments.
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